Multiple opsins in a reef-building coral, Acropora millepora
Gorbunov, MY & Falkowski, PG Photoreceptors in the cnidarian hosts allow symbiotic corals to sense blue moonlight. Limnol. Oceanogr. 47309–315 (2002).
Hayashibara, T., Iwao, K. & Omori, M. Induction and control of spawning in Okinawan staghorn corals. Coral Reefs 23406–409 (2004).
Google Scholar
Kaniewska, P., Alon, S., Karako-Lampert, S., Hoegh-Guldberg, O. & Levy, O. Signaling cascades and the importance of moonlight in coral broadcast mass spawning. Elife 4e09991 (2015).
Google Scholar
Lin, CH, Takahashi, S., Mulla, AJ & Nozawa, Y. Moonrise timing is key for synchronized spawning in coral Dipsastraea speciosa. Proc. Natl. Acad. Sci. USA 118e2101985118 (2021).
Kawaguti, S. On the physiology of reef corals V. Tropisms of coral planulae, considered as a factor of distribution of the reefs. Palau Trop. Biol. Stat. Stud. 2319–328 (1941).
Google Scholar
Mulla, AJ, Lin, CH, Takahashi, S. & Nozawa, Y. Photo-movement of coral larvae influences vertical positioning in the ocean. Coral Reefs 401297–1306 (2021).
Google Scholar
Sakai, Y. et al. A step-down photophobic response in coral larvae: implications for the light-dependent distribution of the common reef coral. Acropora tenuis. Sci. Rep. 1017680 (2020).
Mundy, CN & Babcock, RC Role of light intensity and spectral quality in coral settlement: implications for depth-dependent settlement?. J. Exp. mar. Bio. Ecol. 223235–255 (1998).
Google Scholar
Strader, ME, Davies, SW & Matz, MV Differential responses of coral larvae to the color of ambient light guide them to suitable settlement microhabitat. R. Soc. Open Sci. 2150358 (2015).
Ricardo, GF et al. Impacts of water quality on Acropora coral settlement: the relative importance of substrate quality and light. Sci. Total Environ. 777146079 (2021).
Koyanagi, M. & Terakita, A. Diversity of animal opsin-based pigments and their optogenetic potential. Biochim. Biophys. Acta – Bioenerg. 1837710–716 (2014).
Terakita, A. The opsins. Genome Biol. 6213 (2005).
Google Scholar
Terakita, A. & Nagata, T. Functional properties of opsins and their contribution to light-sensing physiology. Zoologist. Sci. 31653–659 (2014).
Google Scholar
Wada, S. et al. Color opposition with a single kind of bistable opsin in the zebrafish pineal organ. Proc. Natl. Acad. Sci. USA 11511310–11315 (2018).
Gornik, SG et al. Photoreceptor diversification accompanies the evolution of Anthozoa. Mol. Biol. Evol. 381744–1760 (2020).
Google Scholar
Kozmik, Z. et al. Assembly of the cnidarian camera-type eye from vertebrate-like components. Proc. Natl. Acad. Sci. USA 1058989–8993 (2008).
Koyanagi, M. et al. Jellyfish vision starts with cAMP signaling mediated by opsin-Gs cascade. Proc. Natl. Acad. Sci. 10515576–15580 (2008).
Mason, B. et al. Evidence for multiple phototransduction pathways in a reef-building coral. PLoS ONE 7e50301 (2012).
Google Scholar
Suga, H., Schmid, V. & Gehring, WJ Evolution and functional diversity of jellyfish opsins. Curr. Biol. 1851–55 (2008).
Feuda, R., Hamilton, SC, Mclnerney, JO & Pisani, D. Metazoan opsin evolution reveals a simple route to animal vision. Proc. Natl. Acad. Sci. 10918868–18872 (2012).
Hering, L. & Mayer, G. Analysis of the opsin repertoire in the tardigrade Hypsibius dujardini provides insights into the evolution of opsin genes in Panarthropoda. Genome Biol. Evol. 62380–2391 (2014).
Ramirez, MD et al. The last common ancestor of most bilaterian animals possessed at least nine opsins. Genome Biol. Evol. 83640–3652 (2016).
Liegertová, M. et al. Cubozoan genome illuminates functional diversification of opsins and photoreceptor evolution. Sci. Rep. 511885 (2015).
Plachetzki, DC, Degnan, BM & Oakley, TH The origins of novel protein interactions during animal opsin evolution. PLoS ONE 2e1054 (2007).
Sugihara, T., Nagata, T., Mason, B., Koyanagi, M. & Terakita, A. Absorption characteristics of vertebrate non-visual opsin, Opn3. PLoS ONE 11e0161215 (2016).
Google Scholar
Saito, T., Koyanagi, M., Sugihara, T., Nagata, T. & Arikawa, K. Spectral tuning mediated by helix III in butterfly long wavelength-sensitive visual opsins revealed by heterologous action spectroscopy. Zool. Lett. 535 (2019).
Google Scholar
Govardovskii, VI, Fyhrquist, N., Reuter, T., Kuzmin, DG & Donner, K. In search of the visual pigment template. Vis. Neurosci. 17509–528 (2000).
Terakita, A. et al. Expression and comparative characterization of Gq-coupled invertebrate visual pigments and melanopsin. J. Neurochem. 105883–890 (2008).
Sun, L. et al. Distribution of mammalian-like melanopsin in cyclostome retinas exhibiting a different extent of visual functions. PLoS ONE 9e108209 (2014).
Wagdi, A. et al. Selective optogenetic control of Gq signaling using human Neuropsin. Nat. Commun. 131765 (2022).
Yamashita, T. et al. Opn5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein. Proc. Natl. Acad. Sci. USA 10722084–22089 (2010).
Kojima, D. et al. UV-sensitive photoreceptor protein OPN5 in humans and mice. PLoS ONE 6e26388 (2011).
Zhukovsky, EA & Oprian, DD Effect of carboxylic acid side chains on the absorption maximum of visual pigments. Science 246928–930 (1989).
Sakmar, TP, Franke, RR & Khorana, HG Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc. Natl. Acad. Sci. USA 868309–8313 (1989).
Nathans, J. Determinants of visual pigment absorbance: identification of the retinylidene Schiff’s base counterion in bovine rhodopsin. Biochemistry 299746–9752 (1990).
Terakita, A., Yamashita, T. & Shichida, Y. Highly conserved glutamic acid in the extracellular IV-V loop in rhodopsins acts as the counterion in retinochrome, a member of the rhodopsin family. Proc. Natl. Acad. Sci. USA 9714263–14267 (2000).
Terakita, A. et al. Counterion displacement in the molecular evolution of the rhodopsin family. Nat. Struct. Mol. Biol. 11284–289 (2004).
Gerrard, E. et al. Convergent evolution of tertiary structure in rhodopsin visual proteins from vertebrates and box jellyfish. Proc. Natl. Acad. Sci. USA 1156201–6206 (2018).
Nagata, T. et al. The counterion–retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation. Commun. Biol. 2180 (2019).
Google Scholar
Cao, P. et al. Light-sensitive coupling of rhodopsin and melanopsin to G i/o and G q signal transduction in Caenorhabditis elegans. FASEB J. 26480–491 (2012).
Airan, RD, Thompson, KR, Fenno, LE, Bernstein, H. & Deisseroth, K. Temporally precise in vivo control of intracellular signaling. Nature 4581025–1029 (2009).
Ajith Karunarathne, WK, Giri, L., Kalyanaraman, V. & Gautam, N. Optically triggering spatiotemporally confined GPCR activity in a cell and programming neurite initiation and extension. Proc. Natl. Acad. Sci. USA 1101565–1574 (2013).
Katoh, K. & Standley, DM MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30772–780 (2013).
Capella-Gutiérrez, S., Silla-Martínez, JM & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 251972–1973 (2009).
Google Scholar
Kozlov, AM, Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 354453–4455 (2019).
Darriba, Di. et al. ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 37291–294 (2020).