Multiple opsins in a reef-building coral, Acropora millepora

  • Gorbunov, MY & Falkowski, PG Photoreceptors in the cnidarian hosts allow symbiotic corals to sense blue moonlight. Limnol. Oceanogr. 47309–315 (2002).

    ADS Google Scholar

  • Hayashibara, T., Iwao, K. & Omori, M. Induction and control of spawning in Okinawan staghorn corals. Coral Reefs 23406–409 (2004).

    Google Scholar

  • Kaniewska, P., Alon, S., Karako-Lampert, S., Hoegh-Guldberg, O. & Levy, O. Signaling cascades and the importance of moonlight in coral broadcast mass spawning. Elife 4e09991 (2015).

    Google Scholar

  • Lin, CH, Takahashi, S., Mulla, AJ & Nozawa, Y. Moonrise timing is key for synchronized spawning in coral Dipsastraea speciosa. Proc. Natl. Acad. Sci. USA 118e2101985118 (2021).

    CAS Google Scholar

  • Kawaguti, S. On the physiology of reef corals V. Tropisms of coral planulae, considered as a factor of distribution of the reefs. Palau Trop. Biol. Stat. Stud. 2319–328 (1941).

    Google Scholar

  • Mulla, AJ, Lin, CH, Takahashi, S. & Nozawa, Y. Photo-movement of coral larvae influences vertical positioning in the ocean. Coral Reefs 401297–1306 (2021).

    Google Scholar

  • Sakai, Y. et al. A step-down photophobic response in coral larvae: implications for the light-dependent distribution of the common reef coral. Acropora tenuis. Sci. Rep. 1017680 (2020).

    CAS Google Scholar

  • Mundy, CN & Babcock, RC Role of light intensity and spectral quality in coral settlement: implications for depth-dependent settlement?. J. Exp. mar. Bio. Ecol. 223235–255 (1998).

    Google Scholar

  • Strader, ME, Davies, SW & Matz, MV Differential responses of coral larvae to the color of ambient light guide them to suitable settlement microhabitat. R. Soc. Open Sci. 2150358 (2015).

    ADS Google Scholar

  • Ricardo, GF et al. Impacts of water quality on Acropora coral settlement: the relative importance of substrate quality and light. Sci. Total Environ. 777146079 (2021).

    ADS CAS Google Scholar

  • Koyanagi, M. & Terakita, A. Diversity of animal opsin-based pigments and their optogenetic potential. Biochim. Biophys. Acta – Bioenerg. 1837710–716 (2014).

    CAS Google Scholar

  • Terakita, A. The opsins. Genome Biol. 6213 (2005).

    Google Scholar

  • Terakita, A. & Nagata, T. Functional properties of opsins and their contribution to light-sensing physiology. Zoologist. Sci. 31653–659 (2014).

    Google Scholar

  • Wada, S. et al. Color opposition with a single kind of bistable opsin in the zebrafish pineal organ. Proc. Natl. Acad. Sci. USA 11511310–11315 (2018).

    ADS CAS Google Scholar

  • Gornik, SG et al. Photoreceptor diversification accompanies the evolution of Anthozoa. Mol. Biol. Evol. 381744–1760 (2020).

    Google Scholar

  • Kozmik, Z. et al. Assembly of the cnidarian camera-type eye from vertebrate-like components. Proc. Natl. Acad. Sci. USA 1058989–8993 (2008).

    ADS CAS Google Scholar

  • Koyanagi, M. et al. Jellyfish vision starts with cAMP signaling mediated by opsin-Gs cascade. Proc. Natl. Acad. Sci. 10515576–15580 (2008).

    ADS CAS Google Scholar

  • Mason, B. et al. Evidence for multiple phototransduction pathways in a reef-building coral. PLoS ONE 7e50301 (2012).

    Google Scholar

  • Suga, H., Schmid, V. & Gehring, WJ Evolution and functional diversity of jellyfish opsins. Curr. Biol. 1851–55 (2008).

    CAS Google Scholar

  • Feuda, R., Hamilton, SC, Mclnerney, JO & Pisani, D. Metazoan opsin evolution reveals a simple route to animal vision. Proc. Natl. Acad. Sci. 10918868–18872 (2012).

    ADS CAS Google Scholar

  • Hering, L. & Mayer, G. Analysis of the opsin repertoire in the tardigrade Hypsibius dujardini provides insights into the evolution of opsin genes in Panarthropoda. Genome Biol. Evol. 62380–2391 (2014).

    CAS Google Scholar

  • Ramirez, MD et al. The last common ancestor of most bilaterian animals possessed at least nine opsins. Genome Biol. Evol. 83640–3652 (2016).

    CAS Google Scholar

  • Liegertová, M. et al. Cubozoan genome illuminates functional diversification of opsins and photoreceptor evolution. Sci. Rep. 511885 (2015).

    ADS Google Scholar

  • Plachetzki, DC, Degnan, BM & Oakley, TH The origins of novel protein interactions during animal opsin evolution. PLoS ONE 2e1054 (2007).

    ADS Google Scholar

  • Sugihara, T., Nagata, T., Mason, B., Koyanagi, M. & Terakita, A. Absorption characteristics of vertebrate non-visual opsin, Opn3. PLoS ONE 11e0161215 (2016).

    Google Scholar

  • Saito, T., Koyanagi, M., Sugihara, T., Nagata, T. & Arikawa, K. Spectral tuning mediated by helix III in butterfly long wavelength-sensitive visual opsins revealed by heterologous action spectroscopy. Zool. Lett. 535 (2019).

    Google Scholar

  • Govardovskii, VI, Fyhrquist, N., Reuter, T., Kuzmin, DG & Donner, K. In search of the visual pigment template. Vis. Neurosci. 17509–528 (2000).

    CAS Google Scholar

  • Terakita, A. et al. Expression and comparative characterization of Gq-coupled invertebrate visual pigments and melanopsin. J. Neurochem. 105883–890 (2008).

    CAS Google Scholar

  • Sun, L. et al. Distribution of mammalian-like melanopsin in cyclostome retinas exhibiting a different extent of visual functions. PLoS ONE 9e108209 (2014).

    ADS Google Scholar

  • Wagdi, A. et al. Selective optogenetic control of Gq signaling using human Neuropsin. Nat. Commun. 131765 (2022).

    ADS CAS Google Scholar

  • Yamashita, T. et al. Opn5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein. Proc. Natl. Acad. Sci. USA 10722084–22089 (2010).

    ADS CAS Google Scholar

  • Kojima, D. et al. UV-sensitive photoreceptor protein OPN5 in humans and mice. PLoS ONE 6e26388 (2011).

    ADS CAS Google Scholar

  • Zhukovsky, EA & Oprian, DD Effect of carboxylic acid side chains on the absorption maximum of visual pigments. Science 246928–930 (1989).

    ADS CAS Google Scholar

  • Sakmar, TP, Franke, RR & Khorana, HG Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc. Natl. Acad. Sci. USA 868309–8313 (1989).

    ADS CAS Google Scholar

  • Nathans, J. Determinants of visual pigment absorbance: identification of the retinylidene Schiff’s base counterion in bovine rhodopsin. Biochemistry 299746–9752 (1990).

    CAS Google Scholar

  • Terakita, A., Yamashita, T. & Shichida, Y. Highly conserved glutamic acid in the extracellular IV-V loop in rhodopsins acts as the counterion in retinochrome, a member of the rhodopsin family. Proc. Natl. Acad. Sci. USA 9714263–14267 (2000).

    ADS CAS Google Scholar

  • Terakita, A. et al. Counterion displacement in the molecular evolution of the rhodopsin family. Nat. Struct. Mol. Biol. 11284–289 (2004).

    CAS Google Scholar

  • Gerrard, E. et al. Convergent evolution of tertiary structure in rhodopsin visual proteins from vertebrates and box jellyfish. Proc. Natl. Acad. Sci. USA 1156201–6206 (2018).

    ADS CAS Google Scholar

  • Nagata, T. et al. The counterion–retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation. Commun. Biol. 2180 (2019).

    Google Scholar

  • Cao, P. et al. Light-sensitive coupling of rhodopsin and melanopsin to G i/o and G q signal transduction in Caenorhabditis elegans. FASEB J. 26480–491 (2012).

    CAS Google Scholar

  • Airan, RD, Thompson, KR, Fenno, LE, Bernstein, H. & Deisseroth, K. Temporally precise in vivo control of intracellular signaling. Nature 4581025–1029 (2009).

    ADS CAS Google Scholar

  • Ajith Karunarathne, WK, Giri, L., Kalyanaraman, V. & Gautam, N. Optically triggering spatiotemporally confined GPCR activity in a cell and programming neurite initiation and extension. Proc. Natl. Acad. Sci. USA 1101565–1574 (2013).

  • Katoh, K. & Standley, DM MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30772–780 (2013).

    CAS Google Scholar

  • Capella-Gutiérrez, S., Silla-Martínez, JM & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 251972–1973 (2009).

    Google Scholar

  • Kozlov, AM, Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 354453–4455 (2019).

    CAS Google Scholar

  • Darriba, Di. et al. ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 37291–294 (2020).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button
    %d bloggers like this: